二次方程

二次方程是一个有三个系数 - a, b, c - 的二次多项式。

二次方程的表达式为:

ax2 + bx + c = 0

二次方程的解由两个数 x1x2 给出。

我们可以将二次方程变形成以下形式:

(x - x1)(x - x2) = 0

二次公式

二次方程的解由二次公式给出:

 

 

平方根内的表达式称为判别式,用 Δ 表示:

Δ = b2 - 4ac

带有判别式符号的二次公式:

这个表达式很重要,因为它能告诉我们解的情况:

  • 当 Δ>0,有两个实数根 x1=(-b+√Δ)/(2a) 和 x2=(-b-√Δ)/(2a)。
  • 当 Δ=0,有一个根 x1=x2=-b/(2a)。
  • 当 Δ<0,没有实数根,有两个复数根:
    x1=(-b+i√)/(2a) 和 x2=(-b-i√)/(2a)。

问题 #1

3x2+5x+2 = 0

解答:

a = 3, b = 5, c = 2

x1,2 = (-5 ± √(52 - 4×3×2)) / (2×3) = (-5 ± √(25-24)) / 6 = (-5 ± 1) / 6

x1 = (-5 + 1)/6 = -4/6 = -2/3

x2 = (-5 - 1)/6  = -6/6 = -1

问题 #2

3x2-6x+3 = 0

解答:

a = 3, b = -6, c = 3

x1,2 = (6 ± √( (-6)2 - 4×3×3)) / (2×3) = (6 ± √(36-36)) / 6 = (6 ± 0) / 6

x1 = x2 = 1

问题 #3

x2+2x+5 = 0

解答:

a = 1, b = 2, c = 5

x1,2 = (-2 ± √(22 - 4×1×5)) / (2×1) = (-2 ± √(4-20)) / 2 = (-2 ± √(-16)) / 2

没有实数解。这些值是复数:

x1 = -1 + 2i

x2 = -1 - 2i

二次函数图

二次函数是一个二次多项式函数:

f(x) = ax2 + bx + c

 

二次方程的解是二次函数的根,也是二次函数图像与 x 轴的交点,当

f(x) = 0

 

当图像与 x 轴有两个交点时,二次方程有两个解。

当图像与 x 轴有一个交点时,二次方程有一个解。

当图像与 x 轴没有交点时,我们没有实数解(或者有两个复数解)。

 


另见

代数
Copyright © 2024 CanKaoHe.com All rights reserved.

我们所有内容来源于rapidtables.com,遗憾于其没有中文版本,因此建立中文版供网民使用,所有内容版权属于rapidtables.