积分

积分是导数的逆运算。

函数的积分是函数图形下方的面积。

不定积分定义

dF(x)/dx = f(x) => 积分(f(x)*dx) = F(x) + c

不定积分属性

积分(f(x)+g(x))*dx = 积分(f(x)*dx) + 积分(g(x)*dx)

积分(a*f(x)*dx) = a*积分(f(x)*dx)

积分(f(a*x)*dx) = 1/a * F(a*x)+c

积分(f(x+b)*dx) = F(x+b)+c

积分(f(a*x+b)*dx) = 1/a * F(a*x+b) + c

积分(df(x)/dx * dx) = f(x)

积分变量的变化

x = g(t)  和 dx = g'(t)*dt

积分(f(x)*dx) = 积分(f(g(t))*g'(t)*dt)

分部积分

积分(f(x)*g'(x)*dx) = f(x)*g(x) - 积分(f'(x)*g(x)*dx)

积分表

积分(f(x)*dx = F(x) + c

积分(a*dx) = a*x+c

积分(x^n*dx) = 1/(a+1) * x^(a+1) + c , 当 a<>-1

积分(1/x*dx) = ln(abs(x)) + c

积分(e^x*dx) = e^x + c

integral(a^x*dx) = a^x / ln(x) + c

integral(ln(x)*dx) = x*ln(x) - x + c

integral(sin(x)*dx) = -cos(x) + c

integral(cos(x)*dx) = sin(x) + c

integral(tan(x)*dx) = -ln(abs(cos(x))) + c

integral(arcsin(x)*dx) = x*arcsin(x) + sqrt(1-x^2) + c

integral(arccos(x)*dx) = x*arccos(x) - sqrt(1-x^2) + c

integral(arctan(x)*dx) = x*arctan(x) - 1/2*ln(1+x^2) + c

integral(dx/(ax+b)) = 1/a*ln(abs(a*x+b)) + c

integral(1/sqrt(a^2-x^2)*dx) = arcsin(x/a) + c

integral(1/sqrt(x^2 +- a^2)*dx) = ln(abs(x + sqrt(x^2 +- a^2)) + c

integral(x*sqrt(x^2-a^2)*dx) = 1/(a*arccos(x/a)) + c

integral(1/(a^2+x^2)*dx) = 1/a*arctan(x/a) + c

integral(1/(a^2-x^2)*dx) = 1/2a*ln(abs(((a+x)/(a-x))) + c

integral(sinh(x)*dx) = cosh(x) + c

integral(cosh(x)*dx) = sinh(x) + c

integral(tanh(x)*dx) = ln(cosh(x)) + c

 

定积分定义

integral(a..b, f(x)*dx) = lim(n->inf, sum(i=1..n, f(z(i))*dx(i)))
 

x0=a, xn=b

dx(k) = x(k) - x(k-1)

x(k-1) <= z(k) <=x(k)

定积分计算

 ,

  dF(x)/dx = f(x)
 和

integral(a..b, f(x)*dx) = F(b) - F(a)
 

定积分性质

integral(a..b, (f(x)+g(x))*dx) = integral(a..b, f(x)*dx) + integral(a..b, g(x)*dx)

integral(a..b, c*f(x)*dx) = c*integral(a..b, f(x)*dx)

integral(a..b, f(x)*dx) = - integral(b..a, f(x)*dx)

integral(a..b, f(x)*dx) = integral(a..c, f(x)*dx) + integral(c..b, f(x)*dx)

abs( integral(a..b, f(x)*dx) ) <= integral(a..b, abs(f(x))*dx)

min(f(x))*(b-a) <= integral(a..b, f(x)*dx) <= max(f(x))*(b-a)   x member of [a,b]

积分变量的变化

x = g(t)  , dx = g'(t)*dt  , g(alpha) = a  , g(beta) = b

integral(a..b, f(x)*dx) = integral(alpha..beta, f(g(t))*g'(t)*dt)

按部分集成

integral(a..b, f(x)*g'(x)*dx) = integral(a..b, f(x)*g(x)*dx) - integral(a..b, f'(x)*g(x)*dx)

中值定理

f(x) 是连续的,有一个点 c is member of [a,b]  so

integral(a..b, f(x)*dx) = f(c)*(b-a)
   

定积分的梯形逼近

integral(a..b, f(x)*dx) ~ (b-a)/n * (f(x(0))/2 + f(x(1)) + f(x(2)) +...+ f(x(n-1)) + f(x(n))/2)

Gamma函数

gamma(x) = integral(0..inf, t^(x-1)*e^(-t)*dt

Gamma函数收敛于 x>0.

Gamma函数属性

G(x+1) = xG(x)

G(n+1) = n! , n is member of (正整数).

Beta函数

B(x,y) = integral(0..1, t^(n-1)*(1-t)^(y-1)*dt

贝塔函数与伽玛函数的关系

B(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y)

 

 

 

微积分
Copyright © 2024 CanKaoHe.com All rights reserved.

我们所有内容来源于rapidtables.com,遗憾于其没有中文版本,因此建立中文版供网民使用,所有内容版权属于rapidtables.